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1. A foundation built at Kent 

I started my new post-doctoral position with Prof. 
David Jackson in the autumn of 1981. My first task 
in the newly formed Applied Optics Group was to 
paint the walls of the recently acquired optical labs; 
not quite what I was expecting, but nevertheless, 
being young, eager and interested in exploring new 
frontiers in fiber optic sensing, my new 
post-doctoral colleague, Mike Corke, and I pressed 
on. As I reflect back now, it was as if we were 
starting our own company – the spirit was 
entrepreneurial & we were going to wear any hat 
required to get the job done. 

Our focus at Kent started with the topic of 
demodulation techniques for interferometer sensors 
based primarily on Mach-Zehnder (MZ) configuration. 
Early experiments utilized bulk beam splitters to 
split the incident laser beam into two separate fiber 
paths. These paths were then used as reference and 
sensor arms, typically with piezoelectric transducers 
used to simulate weak acoustic signals in the sensing 
path. Prof. Jackson addressed the signal fading in 
interferometric sensors by demonstrating a 

heterodyne detection, and phase-locked homodyne 
approaches during his sabbatical year in Naval 
Research Laboratory (NRL) [1, 2]. These 
approaches provided wide dynamic range, but due to 
the fact electrically active elements were included in 
the arms of the interferometer, they were impractical 
for use in many applications of interest at the time, 
such as underwater acoustic sensing. This motivated 
a research thrust to explore interferometric 
demodulation techniques based on a class of 
“synthetic”, or “pseudo” heterodyne [3] and passive 
homodyne approaches [4]. The advent of low cost 
laser diodes – driven largely by the CD reader 
industry – allowed for a variety of approaches based 
on laser-modulated interrogation techniques. Figure 
1 shows the output of an unbalanced Mach-Zehnder 
interferometer driven by an 830-nm diode laser 
which is frequency swept via injection current 
modulation. The resulting sweep over a full 
interferometric “fringe” with a rapid flyback 
provided the basis for a “pseudo-heterodyne” 
demodulation scheme, which was one of the first 
practical passive interrogation approaches for 
interferometric sensors. These techniques were also 
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very successfully adapted to a variety of applications 
over the years spent at Kent, including surface 
vibrometry [5] and Sagnac interferometric gyroscope 
configuration [6]. 

As mentioned previously, much of our initial 
work was done using bulk beam splitters – fiber 
based couplers were in short supply, as the 
technology to taper & fuse single mode fibers to 
form 3-dB couplers had only just been developed. 
Mike Corke worked diligently at Kent to build a 
fused-coupler fabrication station and successfully 
produced devices for the research efforts. In 1983, 
this led to the first all-fiber Michelson interferometer 
(Fig. 1), being reported. The paper, which described 
the use of the interferometer, combined with a 
digital fringe counter, as a temperature sensor was 
first reported as a post-deadline paper at the 1st 
International Conference on Optical Fiber Sensors 
(OFS-1) held in London in 1983 [7]. 
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Fig. 1 All-fiber Michelson interferometer, first reported in 

1983. 

In addition to the fundamental signal processing 
of interferometric signals for demodulation, we also 
made some great first step in creating 
interferometric accelerometer [8] and magnetometer 
configurations [9, 10]. The magnetometer was 
particularly noteworthy as the concept relied on a 
closed loop approach that stabilized the bias 
magnetic field around a magnetostrictive element 
attached to the fiber in one arm of a MZ 
interferometer. This technique eliminated the issue 
of hysterisis common to magnetostrictive elements, 
and provided for the first time a sensitive, 

reproducible fiber optic based magnetic field sensor. 
Finally, in collaboration with several other 

fellow researchers at Kent, we extended these 
concepts to explore fiber Fabry-Perot(FP) sensors, 
polarimetric sensors based on Hi-Birefringence fiber, 
and again tested these new configurations for 
sensing a variety of measurands [11–14]. 

2. Interferometric sensing 

In November 1984, I took up a position in NRL 
in Washington DC. NRL’s optical science research 
team had been leading the way in developing fiber 
optic sensors for underwater acoustic sensing, and 
had already demonstrated many new acoustic 
transduction and interferometer phase measurement 
techniques, much of which was reported in a 
seminal article by T. Giallorenzi et al. in 1982 [15].  

My initial work in the NRL continued to explore 
the fundamentals of interferometers and develop 
techniques to optimize the performance of sensor 
systems, particularly sensor arrays. This work 
focused on several key areas: 

1) demodulation and noise performance,  
2) polarization effects in interferometers, 
3) multiplexing architectures, and 
4) “DC” measurands. 
The following subsections describe some of the 

key accomplishments in these areas. 

2.1 Demodulation & phase noise 

The importance of developing passive 
demodulation techniques for interferometric sensors 
to support acoustic sensor development work in 
NRL leads to a focus on practical interrogation and 
noise reduction techniques. With laser modulated 
based interrogation, an unbalanced interferometer is 
required, which leads to an increase in phase noise 
in the interferometer output, limiting the sensitivity 
that could be achieved. The research undertaken 
explored methodologies to compensate for the noise, 
and to test new laser sources for a device with 
promising characteristics. Novel demodulation & 
phase noise compensation approaches were 
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developed as part of this activity [16, 17]. One 
simple and novel approach utilized a “cosine 
generator” chip (Analog Devices AD639), which 
could be phase locked to the output of an 
interferometer, and thus track the interferometer 
phase bias through a simple electronic closed loop 
approach [18]. This technique was very successfully 
applied to the fiber gyroscope, and implemented in a 
flight-tested version of the device [19].  

As an example of the testing of laser sources, 
newly developed YAG ring lasers [20] were found to 
be particularly suited for use in interferometric sensor 
systems due to their exceptionally low frequency jitter 
and ability to be frequency modulated at high rates. 
The noise characteristics of these lasers were 2 to 3 
orders of magnitude lower than that of diode lasers, 
and proved to be valuable tools for a range of 
subsequent work in this field. This laser also provided 
the basis for an interferometric noise measurement 
experiment that explored the intrinsic thermal noise in 
the fiber itself [21]. In this experiment, a MZ 
interferometer, with fiber arms of 1 km each in length, 
balanced within about 1 cm. The interferometer was 
built in an acoustic & vibration isolation housing to 
minimize extraneous noise. The noise spectrum was 
recorded and calibrated against a known phase 
reference signal. The fiber arms were then carefully cut 
back to 100 m and 10 m each (approx.) while 
maintaining an unbalance of 1 cm between the paths, 
and the phase noise spectrum was recorded. The phase 
noise floor was found to be proportional to √L, in good 
agreement with a theory developed. These experiments 
reported some of the lowest phase noise level in fiber 
interferometric systems (<0.1 µrad/√Hz at 1 kHz). 

Noise effects in reflective interferometric 
configurations such as Michelson interferometer 
were analyzed and an approach to eliminate the 
effects of coherent Rayleigh backscatter was 
developed [22]. 

2.2 Polarization effects 

Polarization effects are also a critical factor in 

interferometric sensing, as polarization drifting can 
lead to a phenomena termed polarization induced 
fading, whereby the visibility of an interferometer 
output can be reduced to zero for orthogonal states 
exiting the arms of an interferometer. While this was 
widely understood [23], and polarization controllers 
based on rotatable “fiber waveplates” were 
developed for use in laboratory experiments [24], 
the phenomenon created a serious practical 
limitation for remotely deployed sensor systems. As 
part of the “core” activity in NRL, my co-workers & 
I extensively studied, characterized and modelled 
polarization effects in interferometric sensors [25, 
26]. This work led to the development of new 
approaches to eliminate polarization fading based on 
input polarization tracking [26], scanning [27], and 
switching [28] techniques. A full statistical model 
for the fading of interference visibility in 
interferometers was developed which allowed an 
accurate assessment of the probability distributions 
for fading conditions [29]. This work provided 
valuable insights into the polarization behaviour of 
interferometric sensors, and new active control 
mechanisms for overcoming the effect.  
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based on the use of Faraday-rotator mirrors (FRMs). 

In a related activity, the application of this 
understanding to Michelson interferometers 
configured with FRMs, as apposed to conventional 
mirrors, led to the demonstration of a completely 
polarization independent interferometric system [30, 
31]. This unique configuration, illustrated in Fig. 2 
was subsequently widely used due to its practical 
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aspects. The work was also extended to explore the 
use of depolarized input light in interferometry [32], 
gyropscopes [33], phase noise induced arising due to 
input polarization fluctuations [34, 35], and create 
novel formats of polarization independent 
ring-resonators for example [36]. 

2.3 Multiplexing techniques 

Many of the applications for interferometric 
fiber sensors developed in NRL focused on the use 
of arrays of such devices, and this led to the 
development of a variety of multiplexing approaches.  
This is particularly true for interferometric acoustic 
sensor (hydrophone) arrays, but applied also to 
magnetic sensors arrays. 

Multiplexing approaches based on time (Fig. 3) 
[37, 38], frequency [39], code [40], and 
wavelength-time division [41] techniques were 
developed and implemented. In many cases, these 
approaches are analogues of the multiplexing 
techniques developed for optical fiber 
communication systems, and consequently, 
leveraged many of the fiber based modulators, 
frequency shifts and wavelength combiners & 
splitters developed for communication in order to 
implement these techniques.  
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Fig. 3 Time division multiplexed array of Mach-Zehnder 

interferometers. 

Each of these multiplexing schemes was 
implemented, extensively tested, and compared [42, 
43]. The most capable multiplexing formats 
developed have exploited the power of hybrid 
approaches – e.g., by combining time and 
wavelength division multiplexing [41]. Time- and 
wavelength-division multiplexed arrays were 
ultimately developed and demonstrated for 
multiplexing over 120 sensors. Several novel 
configurations for multiplexed sensor formats that 

did not employ completely separated distinct 
interferometric sub elements were also devised & 
demonstrated [44–46]. 

2.4 “DC” measurands 

Another focus of the work in NRL was in 
understanding and developing methodologies to 
utilize interferometric sensors for measuring “DC” 
measurands, such as quasi-static strain, acceleration. 
These techniques utilized multi-spectral, 
dual-wavelength or non-linear transduction 
mechanisms to allow the detection of phase in an 
extended unambiguous dynamic range. The first 
demonstration of a dual wavelength interferometric 
approach applied to MZ interferometers [47], fiber 
gyroscopes [48], and polarimetric sensors [49] was 
reported. Approaches based on sub-carrier 
modulation [50], and coherence synthesis/visibility 
control were also devised & demonstrated [51]. 

The nonlinear phase transduction approach 
developed [52] utilized a novel geometric 
arrangement for detecting strain in which a fiber 
sensing element was moved laterally from its 
longitudinal axis, as indicated in Fig. 4.  
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Fig. 4 Non-linear phase transduction mechanism for “DC 

measurand” sensors. 

This created a quadratic dependence on the fiber 
strain on displacement, which was exploited to provide 
DC measurement capability through a high frequency 
dither applied to the fiber. The technique was used to 
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create a number of different sensor configurations, 
including an accelerometer with sub-μg sensitivity and 
excellent stability [53], and a DC pressure sensor [54]. 
Multiplexing concepts for these forms of DC 
measurands were also devised & tested [55, 56]. 

In addition to the work on the fundamental 
operational characteristics of interferometric 
systems, the application of these interferometers to a 
range of practical sensor configurations was also 
explored.  Much of this work exploited attributes of 
the various signal processing/demodulation concepts 
to create novel magnetic field [57–59] and Faraday 
rotation current sensors [60, 61]. 

3. Bragg grating sensors 

Fiber Bragg gratings (FBGs) are intrinsic sensor 
elements that can be “written” into optical fibers via 
a ultra-violet (UV) photo-inscription process. The 
photo-inscription process produces a periodic 
modulation of the index of the glass in the fiber, 
which has been shown, with appropriate annealing, 
to be stable even at relatively elevated temperatures. 
The advantages of Bragg grating sensors are well 
known in the fiber sensor community, and include: 
providing a simple intrinsic “in-fiber” sensing 
element, their inherent self-referencing capability, 
and ease of multiplexing along a single fiber [62]. 

FBG based sensors have proven to be useful for 
a variety of applications. In particular the field of 
embedded distributed sensing in materials for 
creating “smart structures” has been a primary 
interest. Here fiber sensor arrays can be embedded 
into the materials to allow measurement of 
parameters such as load, strain, temperature, and 
vibration, from which the health of the structure can 
be assessed and tracked on a real-time basis. FBGs 
have also been explored as the optical sensing 
element in a range of other fiber sensor configurations; 
grating based chemical sensors, pressure sensors, and 
accelerometers are examples [62]. 

As illustrated in Fig. 5, the basic principle of 
operation commonly used in a FBG based sensor 
system is to monitor the shift in wavelength of the 

returned “Bragg” signal with the changes in the 
measurand (e.g. strain, temperature). The Bragg 
wavelength, or resonance condition of a grating 
varies approximately linearly with temperature  
(over 0–200 ℃) and strain. A general run of thumb 
responsivity is a change of approximately 1 pm 
(0.001 nm) per µstrain and approximately 9 pm per 
1 ℃ for Ge-doped silica fibers at 1.3 µm. 
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Fig. 5 Fiber Bragg grating spectral response.  

The work on FBGs reviewed here falls into three 
categories: 

1) interrogation and multiplexing approaches, 
2) applications in structural monitoring, and 
3) FBG sensor system commercialization. 

3.1 Interrogation and multiplexing approaches 

Although the applicability of FBGs to sensing 
was demonstrated by Meltz et al. in 1989 [63], the 
experimental system utilized laboratory spectrum 
analyzers for the wavelength determination. 
Following this, approaches based on simple 
wavelength discriminators were reported [64], 
employing ratio-metric detection and broadband 
filter concepts. The first practical interrogation 
approach for a multiplexed string of FBGs, 
illustrated in Fig. 6, based on the use of a scanning 
fiber Fabry-Perot filter was reported in 1990 [65].   
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Fig. 6 Scanning Fabry-Perot based multiplexed FBG sensor 

array. 
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Figure 7 shows a comparison of the strain 
monitored with a scanning-filter demodulated FBG 
and a resistive foil strain gauge reference gauge 
when both were strained to –2000 µstrain. 
Resolution on the order of about 1 µstrain was 
achieved with FP approach, with up to 16 gratings 
multiplexed on a single fiber.  
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Fig. 7 Comparison of FBG strain sensor and corresponding 

reference electrical gauge. 

A simple extension of this to address different 
FBG strings using an optical switch allowed such an 
instrumentation system to address several “arrays” 
of gratings. Based on this approach, a system for 
tracking 60 grating sensors was developed and 
deployed in a practical structural monitoring 
application [66].  

While the scanning FP scans each FBG sensor 
wavelength in a sequential manner, direct 
spectroscopic analysis provides full spectrum 
analysis. A novel spectroscopic approach developed 
direct for analyzing the return signals is analysis via 
a fiber Fourier transform spectroscopy (FFTS) [67]. 
In this case, the light from an array of grating 
sensors is fed to an interferometer in which one arm 
can be scanned to change the relative optical path 
lengths. As the path difference passes through zero, 
a beat signal between the optical components is 
generated at the detector. For a multi-wavelength 
signal, such as that produced by the grating array, 
the detector output comprises a series of discrete 
audio frequencies, each of which corresponds to a 
particular grating. 

While FBGs provide an inherent wavelength- 
based multiplexing capability, approaches to 
augmenting this based on time and/or frequency 
division multiplexing were developed and 
demonstrated. A novel approach to implementing a 
high-density distributed FBG array utilized the 
pairing of low-reflectivity gratings with 
high-sensitivity time-resolved detection to form an 
optical time-domain reflectometer (OTDR) 
interrogator for FBGs was reported [68]. Because 
deleterious effects arise with strongly written FBG’s 
whose reflected light signals are separated in time, 
but overlapping in the spectral domain (due to 
“multiple-reflection” and “spectral-shadowing”), 
this approach utilizes very low reflectivity (< 5%) 
gratings.  

Another novel aspect of this system was the use 
of chirped-broadened gratings with an asymmetric 
“ramp” profile (sawtooth) as illustrated in Fig. 8, 
which produced a monotonic increase in reflectivity 
with strain for each of the FBGs in the sensor array. 
This powerful technique could be used as the basis 
of a very dense array of grating sensors. 
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Fig. 8 Asymmetric low reflectivity “ramp” profile chirped 

gratings designed for OTDR-type interrogation. 

The use of interferometric-configurations to 
detect the shift in the resonance condition of a FBG 
was reported in several papers [69, 70]. Here, an 
unbalanced interferometer is employed as an optical 
filter element with an interferometric cosinusoidal 
transfer function, in which phase bias term depends 
on the input wavelength. Figure 9 shows the general 
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principle of this technique: light reflected from a 
grating is coupled back through an all-fiber 
interferometer which is unbalanced by ΔL. Due to 
the inherent wavelength dependence of the phase of 
an unbalanced interferometer on its input 
wavelength, shifts in FBG reflection wavelength are 
converted into phase shifts at the interferometer 
output.  
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Fig. 9 Mach-Zehnder based FBG sensor interrogation for 

dynamic strains. 

By appropriate choice of the interferometer 
optical path difference (OPD) (the interferometer 
OPD must be kept less than the effective coherence 
length of the light reflected from the grating – 
approximately equal to the length of the grating), 
this technique can be made to be extremely sensitive 
to weak dynamic Bragg wavelength shifts. For 
example, with an interferometer of OPD of 1 cm, the 
output wavelength-to-phase conversion factor is  
–37 rad/nm at a wavelength of 1.3 nm. Typical 
interferometric systems provide µrad/rootHz phase 
detection sensitivity and strain resolution of  
–0.035 nanostrain/rootHz. A sensor with a resolution 
of 0.6 nanostrain/rootHz has been demonstrated. It is 
interesting to note that the equivalent optical 
frequency shift of the FBG is about 100 kHz, 
illustrating the ultra-high sensitivity of this approach. 

Although very sensitive to dynamic strains, the 
interferometric technique can be problematic when 
being used for quasi-static strain measurement due 
to drifts in the interferometer bias phase itself. 
However, a technique to compensate for this drift 
using a reference wavelength to directly monitor the 

interferometer stability has been reported [71]. This 
approach has been used to monitor temperature, and 
in particular to allow differential temperature. 

This interferometric wavelength discriminator 
approach was also successfully applied to a Doppler 
shifted laser signal reflected off a vibrating surface 
to provide a novel form of vibrometer [72].  

Fiber Bragg gratings are also ideal for use as 
spectrally narrowband reflectors for creating 
in-fibercavities for fiber lasers. This area attracted 
considerable interest from both the 
telecommunication industry for tuneable single 
frequency devices for wavelength division 
multiplexed networks and the sensing field for strain, 
temperature, and very high resolution dynamic strain 
monitoring. 

Several variations on this concept were reported 
[73–75]: the most basic form of a fiber Bragg 
grating laser sensor (FBGLS) utilizes either of two 
gratings of matched Bragg wavelength to create an 
in-fiber cavity, or one grating combined with a 
broadband reflector. The use of doped fiber section 
between the gratings or grating and reflector (e.g. 
Erbium) allows the system to be optically pumped to 
provide cavity gain and thus lasing. The device can 
be implemented in various ways and operated in 
either a single frequency or multi-mode fashion [72]. 
When being configured as a sensor element, changes 
in the environmental conditions subjected to the 
laser cavity and the gratings can be detected by 
monitoring the change in some characteristic of the 
output. For strain or temperature variations on the 
gratings themselves, the shift in wavelength of the 
laser output is identical to that obtained with the 
passive approach for monitoring FBGs. With FBG 
laser sensor configurations, however, it is also 
possible to detect such effects as the beating 
between different longitudinal cavity modes or 
polarization modes in the system [74]. As with basic 
FBG sensing, the inherent wavelength division 
addressing capabilities of gratings also allow 
distributed laser-sensors to be implemented [74, 75]. 
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Figure 10 illustrates an example of the type of 
fiber laser sensors which have been demonstrated. 
Here, a short cavity fiber laser created by gratings of 
matched wavelength is remotely pumped. The 
grating lasers, which can be as short as 3 cm in 
length, behave as sensors with a gauge length equal 
to that of the cavity. 
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Fig. 10 Multiplexed FBG-based fiber laser sensor array. 

Various configurations for FBG laser sensors 
have been reported, including an interferometric 
detection technique in which an ultra high sensitivity 
strain sensing was demonstrated. This configuration 
was used as the basis for a fiber laser magnetometer 
[76] and the sensitivity/crosstalk of such short gauge 
length strain/acoustic multiplexed sensors was 
investigated [77]. 

Other FBG grating sensors reported include 
long-period grating sensors [78], intra-grating sensors 
based on chirped FBGs with high spatial resolution 
capability [79], and interferometric configurations 
based on gratings reflectors, including novel nested 
interferometric topologies [80].  

3.2 Applications 

The primary focus for application of FBGs 
through the late 1990s and 2000s was in the 
development of smart structures. FBGs are ideally 
suited for this application, as they can be embedded 
into a range of materials, including composites, or 
surface attached in a low profile manner to other 
materials. A couple of notable applications included 
the monitoring of a US highway bridge (I-10 in New 
Mexico) with 60 FBGs and a remote monitoring 
system [81]. The gratings were bonded to steel 
girders on the underside of the bridge. Figure 11 
shows representative sensor transient strain 

responses due to a passing car (Fig. 11(a)) and truck 
(Fig. 11(b)) loading of the bridge span (photo inset).  
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Fig. 11 FBG sensor transient strain responses due to a 

passing car (a) and truck (b) loading of the instrumented I-10 

bridge span. 

A second example of the application of 
distributed FBGs was on a composite ship hull. The 
technical program was named CHESS (composite 
hull embedded sensor system). In this research 
program, the composite hull of an advanced 
Norwegian Navy fast patrol boat was instrumented 
to monitor & predict potential delamination damage 
to the hull caused by high sea loads. Particular 
interest on this vessel, which was a surface effect 
ship with a catamaran hull built of sandwich panels 
with a foam core and forced composite skins, was 
the “wet deck” between the primary dual hulls. This 
wet deck normally rides above the sea level, but in 
high sea states, the wet deck can suffer large 
transient loads due to wave slamming, potentially 
leading to hidden composite damage.  

The CHESS demonstration comprised a 
multiplexed system monitoring 4 FBG strain sensors. 
The system was designed to analyze transient strain 
responses, as the peak loads were those that could 
create composite damage [82, 83]. Figure 12 shows 
an example of the root mean square (RMS) transient 
strain recorded by a grating attached to the wet deck 
of the ship due to a low-level wave loading events. 
While this initial work was conducted on a 
prototype vessel, this program was successfully 
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transitioned to the testing of in-service ships, and 
more extensive FBG sensor systems, with over 50 
grating sensors being installed and sea-tested [84]. 
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Fig. 12 FBG sensor RMS transient strain responses due to 

hull loading in the CHESS sea trail. 

3.3 Commercialization 

While FBGs appeared ideal for many sensing 
applications, little in the way of commercial sensor 
systems had appeared on the market through the late 
1990s. 

In 1999, I left NRL & joined a new start-up, 
CiDRA Corporation, where we developed a suite of 
transducers that utilized gratings as the core building 
blocks for a network of wavelength-encoded sensors 
for pressure, temperature, vibration, and flow [85]. 
These devices were designed, engineered and tested 
to withstand the harsh environments experienced in 
permanently installed oil well reservoir monitoring 
systems. CiDRA was founded to exploit the use of 
FBGs in this market. The oil and gas industry was 
chosen as it has the right attributes to enable the fast 
adoption of new technology, namely, it comprised: 

1)a multi $-billion industry with very big 
companies, 

2)an unmet need, with strong economic drivers, 
and 

3)a track history of a strong commitment to 
investing in future technologies. 

Down-hole, or in-well measurement plays a critical 
role in the production of oil and gas reservoirs: 
parameters such as pressure, temperature and flow 
provide valuable insights into the depletion dynamics 

of a reservoir that, if it is optimized, can be highly 
beneficial to the productivity and economic return. 
Unfortunately, oil and gas reservoirs represent some of 
the harshest, least accessible environments on earth. 
This paper addresses the development and 
commercialization of fiber optic sensing systems to 
monitor the conditions of these reservoirs on a real 
time basis as the oil and gas is produced.   

Significant interest was directed towards this area 
during the late 1990s and early 2000s, and several 
types of fiber optic sensors were demonstrated for well 
monitoring use, most notably, distributed temperature 
sensing (DTS) for well temperature profiling. The 
multiplexed or distributed sensing capability of FBG 
sensors is of particular pertinence for in-well 
applications in the oil and gas industry, where there is 
the need to monitor a parameter, or parameters, at 
many spatial locations through the well-bore, or 
horizontal/multi-lateral components of the well are of 
interest. 

The sensor suite developed by CiDRA comprised 
all facets of the “system” required for deployment in 
the oil & gas industry, including armoured fiber 
cabling, well-head feed-throughs, sensor housings, and 
surface instrumentation/data logging sub-systems. The 
overall system is depicted in Fig. 13. 

 

Fig. 13 CiDRA FBG-based down-hole reservoir temperature 

and pressure monitoring system. 
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Major research and engineering activities were 
applied to the hardening of sensors for the 
temperature and pressure environments experienced 
in-well, which typically ranged up to 200 ℃ and 
20,000 psi respectively. Figure 14 indicates the 
temperature independent nature of the output of the 
pressure transducer developed. Here, the sensor was 
cycled over a pressure range from 0 to 15,000 psi 
(100 bar), with each cycle at a different temperature 
ranging from 25 ℃ to 150 ℃. The device showed 
minimal temperature sensitivity and exceptionally 
low hysterisis.  
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Fig. 14 FBG pressure response over 0 to 15,000 psi at 

various operational temperatures.  

The results of efforts to minimize long term drift 
on a FBG pressure sensor are shown in Fig. 15. Here, 
the gauge was subjected to 5,000 psi applied 
pressure at 150 ℃ for over 2 years. As shown the 
drift in the gauge was well within 0.015% full 
scale/year, meeting the requirements for certain key 
oil-well applications. It is worthy of noting that the 
detection system resolution was about 0.1 pm, which 
corresponded to roughly 0.25 psi for an 15,000 psi 
gauge over the life of the system. 

In addition to new temperature & pressure 
transducers for these environments, CiDRA 
developed a fundamentally new methodology for 
multiphase flow metering. This resulted in a 
production-tubing deployed fiber optic flow meter 
which was completely non-intrusive and contained 
no moving parts. The flow meter utilized multiple 
unsteady pressure measurement spatially distributed 
along a sensing region of the well bore to listen to 

production-generated noise. Unsteady pressure 
measurement was monitored using an array of 
acoustic sensors formed via FBGs. The flow meter 
leveraged the common fiber optic in-well cabling 
etc., as the pressure & temperature monitoring 
system, but utilized additional surface 
instrumentation. 
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Fig. 15 FBG pressure transducer drift over 2 years at 500 psi 

& 150 ℃. 

4. Micro encoded-particle 

The work on Bragg gratings would not be 
complete without a mention of a detour into the 
world of bio-assays. In 2003, I moved from CiDRA 
to CyVera Corporation, where we developed a 
methodology for over-writing multiple gratings into 
a length of optical fiber to form a comb-like spectral 
signature. It was realized that if certain elements of 
this comb were not written, the subsequent output 
appeared in the form of a digital binary code in the 
spectral domain. While this had utility in certain 
sensing applications [86], we realized that the fiber 
should be segmented into short lengths, the “code” 
remained detectable in each fiber segment, and, as a 
photo-inscribed grating was a form of volumetric 
grating, these short elements could be interrogated 
by side illumination.  

This technology ultimately led to the 
commercialization of a product platform for DNA 
analysis by Illumina Inc. in 2007 [see 
www.illumina.com]. 
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